
Accounting for interferences in the design of
Time-Triggered Applications

Antoine FERLIN, IRT Saint-Exupéry, antoine.ferlin@irt-saintexupery.com
Eric Jenn, Thales AVS and IRT Saint-Exupéry, eric.jenn@irt-saintexupery.com

Marc Kaufmann, Safran Electronics and Defense, marc.kaufmann@safrangroup.com

Abstract: Multicore processors are making their way into safety critical embedded systems. In order to ensure
compliance with temporal requirements, interferences between cores induced by the shared platform resources must
be taken into account and controlled. This paper proposes an approach to account for SDRAM interferences in the
context of a time-triggered software architecture. The approach is applied on a simple robotic application.
TOPIC: Embedded computing platforms and networked system/Multi-core/Many-core platforms
Keywords: Multi-core, Interference, SDRAM, LET

1

1 Introduction
Multicore processors are rapidly making their way into safety critical embedded systems, pushed by an ever increasing

need for more computing power in less space and with less energy. If computing power and energy were the only

drivers, we would simply use – or get inspiration from – the numerous computing platforms used in the general market

for desktop computing or mobile communication or gaming. However, our embedded systems must be dependable,

and a prerequisite to dependability is the capability to demonstrate the compliance with all requirements, and in

particular those directly or indirectly related to time.

Demonstrating compliance with temporal requirements requires at least an accurate – and possibly a precise –

estimation of software execution times, and more specifically, of their worst-case values (WCET).

On the hardware side, it is well known that obtaining these estimations on a modern high-end processor is extremely

difficult due to the presence of the numerous, complex, and sometimes not so well documented mechanisms aimed at

reducing the mean execution times. Some of those mechanisms are part of the processing units, such as caches, branch

prediction and speculative execution units, out-of-order execution pipeline, etc. [1]–[5]. Some others may be located

out of the processing units, such as interconnects, communication accelerators (e.g., NXP’s Datapath Acceleration

Architecture (DPAA)), or Synchronous Dynamic RAMs (SDRAM). All these mechanisms make WCET estimation complex

for the very reason that they are often shared resources between applications running concurrently on different cores.

In addition, their behaviours are often complex (e.g., branch prediction and speculative execution) and their

documentation is sometimes incomplete or not available. In any case, the effects of these hardware mechanisms on

execution times have to be estimated and, possibly, bounded, using analytical or empirical means. In this paper, focus

is placed on interferences caused by the SDRAM.

On the software side, compliance with temporal requirements may leverage on appropriate programming abstractions,

such as ZET (Zero Execution Time) or LET (Logical Execution Time) synchronous programming models [6], [7]. The key

feature of the synchronous model is to provide an abstract, ideal, and mathematically tractable view of time. That way,

the programmer does not have to consider the physical time at which computations occur, but the logical time at which

they occur. With an appropriate choice of this logical time, programming, compilation, debugging, and – last but not

least – verification, are greatly simplified. In the ZET abstraction, the execution platform of a program is conceptually

considered to run infinitely fast so that each job (task instance) executes instantaneously, at specific ticks. In the LET

model, inputs and outputs are performed at tick boundaries too, but the job itself may take place at any time between

two successive ticks. Note that, even though this model of computation strongly constrains inter-task communications,

it does not prevent interferences at SDRAM level since accesses to SDRAM may indeed occur at any time during the

execution of a job.

In this paper, we consider a time-triggered implementation of the LET model [8] in which events are triggered by real-

time. Giotto, is an example of an implementation of such model [9].

mailto:antoine.ferlin@irt-saintexupery.com
mailto:eric.jenn@irt-saintexupery.com

2

2 Our contribution
This paper proposes to combine two engineering techniques in order to improve the temporal guarantees given to an

application developer: (i) the Krono-Safe’s Asterios technology1 which implements the time-triggered LET model, and

(ii) an approach to estimate the delays due to interferences caused by concurrent accesses to SDRAM.

The basic principle is the following. The application is designed and a time budget is allocated to each of its concurrent

components called “agents”. A time-triggered schedule is generated using Krono-Safe’s toolset. This schedule and a

model of the SDRAM is used to estimate the delays induced by SDRAM accesses. This estimation is then used to point

out the “hot spots” of the software architecture, i.e., the time intervals that show numerous conflicts and for which the

budgets of the interfering tasks need to be checked or possibly corrected. This information can also be used to modify

the design so as minimize interferences, and reduce delays.

The rest of this paper is organized as follows: Section 3 presents the time-triggered implementation model; Section 4

gives an overview of the related works; Sections 5 and 6 presents our analysis method and its application; finally, Section

7 concludes the paper.

3 The time-triggered model
The time-triggered implementation of the LET model is one of the models selected by the CAPHCA research project2 to

ensure the dependable programming and deployment of parallel applications on multicore platforms [10]. In practice,

we use the implementation of this model provided by Krono-Safe’s Asterios environment [11].

Two concepts are worth being introduced: Agent and Repetitive Sequence of Frame.

 An agent is an autonomous unit of processing programmed in Krono-Safe’s PsyC language. It is composed of a

specification of the agent’s communication interface and a description of the task to be executed. The task is

described using a combination of C processing statements (actions) and statements expressing temporal constraints

(advance statement). Each agent is cadenced by a logical clock: between two consecutive ticks of this clock, an

instance of the described task, called job, is executed. All logical clocks of the program are derived from one unique

physical clock provided by the Asterios environment or by another external source.

 A Repetitive Sequence of Frame (RSF) is a time-triggered sequence of jobs that is repeated during the program

execution. The RSF is built from the description of the agents and from the time budgets allocated to them. Hence,

the RSF is valid only if the defined time budgets are valid. Note that in case of budget violation, the error is confined

to the agent without any impact on the other agents. In addition, a spatial partitioning mechanism ensures that

each agent only accesses its own memory space defined at configuration time.

An example of a RSF is given on Figure 1. It shows the jobs of 14 agents executed on the two cores of the execution

platform. Each agent is executed every 1ms except for the Ethernet ones which are executed every 2ms. The length of

the RSF in this example is 2ms.

Figure 1 Example of Repetitive Sequence of Frame (RSF)

1 http://www.krono-safe.com/
2 CAPHCA is carried out at the Institut de Recherche Technologique Saint-Exupéry of Toulouse.

3

4 Related Works
The multi-core processors used for critical embedded system requires to deal with interferences problems.

Interferences directly increase the WCET of the tasks, then the WCET optimization could be a means to handle

interference problems. A lot of works explore the way to compute the WCET of a multi-core program [1], [2], [4], [12].

The major problem is the computation of an accurate over-approximation of real WCET of a multi-core application. In

addition, sources of latency are multiple : SDRAM [13], interconnect [14], …

A memory interference is an access conflict between two agents at SDRAM level. In addition, occurrences of

interferences cannot be precisely predicted within the time-line of the program. [15] bypasses this problem by defining

a probabilistic WCET, built using a set of experimental measurements on executed tasks. Based on measurement during

executions of the application, a bias can be inconveniently introduced because of lacks of test coverage. Another

important idea of this method is the use of the scheduling to compute the WCET. [16] defines the notion of superblock,

a non-pre-emptable task instance with a defined memory model. It considers then three memory models dedicated to

the analytical computation of the WCET and shows the importance of a design that separates computations from

accesses to SDRAM. Combination of different static analysis means such as abstract interpretation and model checking

has also be explored by [17], to estimate L1 cache load, and then SDRAM-and-bus loads. Transition to industrial scale

may be jeopardised by the requirement of annotations at statement level with cache hit/miss classification.

Another research field consists in merging several techniques in order to build a program with a limited number of

memory interferences by construction. [18] looks at schedulability from a different perspective of our works. Instead of

analysing interferences to ensure schedulability, they analyse programs to detect interference in case of non-

schedulability. Results are based on several empirical and formal analyses. [19] and [20] focused on paralleling program

written with synchronous languages as LUSTRE. Interferences are taken into account by computing delays due to read

and write memory accesses. Once integrated into the WCET computed in isolation, a scheduling is then computed, and

the obtained program is correct-by construction. Use of WCET enhanced by interference delays instead of time budget

is the main difference between these works and our approach. In our opinion, interference delays are always

pessimistic, which has a high impact on the computed schedule.

Because of difficulties to compute a precise WCET to handle the interference problem, our work focuses on the

definition of a metric to quantify interference instead. [12] proposes an analysis of the dependence of tasks using direct

acyclic diagrams as task model. Interferences are not studied at hardware level but at software level. In our works, time-

triggered abstraction allows the limitation of interference due to task dependences. [13] precisely describes architecture

of a SDRAM component and provides a methodology to compute interference delays according to the memory

characteristics. But, resulting delays are computed at core level and not at task level. This granularity is not sufficient to

validate time budget of each agent. [21] similarly computes interference delays, but because it does not precisely define

the delay per memory access with parameters of the SDRAM datasheet, it is not as precise as [13]. In addition, the

scheduling is not precisely taken into account, for the both methods.

Our work aims at defining an interference delay, handled as a cost function to be optimized. Hence, we use [13] to

compute a delay per memory access, but we have to define a precise method which takes the RSF into account.

5 Accounting for interferences

5.1 Overview
Our interference analysis covers steps 3 and 4 of the five-step process depicted on Figure 2:

 The first step consists in developing the high level architecture of both software and hardware using AADL. The

second step consists in translating the AADL model to generate an initial, architectural, PsyC model that will be

completed manually. The bridge is based on the OSD metamodel developed by Krono-Safe within the S3P

collaborative project3, using model engineering techniques. Additional C libraries referenced by the AADL model

have to be developed separately.

 The third step concerns the computation of the RSF by Asterios. A schedulable program is followed by its

compilation, otherwise the process has to restart from the first step.

 The fourth step consists in extracting the information from the RSF required to compute the interferences. The

output of this step is an evaluation of the delay caused by the interferences.

3 Smart, Safe and Secure Platform : http://www.s3p-alliance.fr/

4

 Finally, the AADL model is enriched using the output of the previous step, in order to reduce the interference level.

The process can be repeated until obtaining an acceptable level of interferences.

The objective of step 3 and 4 is to point out underestimated time budgets (or correct those budgets) considering the

estimation of the interferences that may occur during the execution of the application’s agents. This process,

represented by the grey arrow on the figure, is iterative. Starting from an estimation of the budgets, an initial RSF is

generated. This RSF allows a temporal profile of memory accesses to be computed, from which interference delays are

estimated. As we will see later, the estimated interferences may either be used to update the software architecture in

order to remove the interference “hot-spots”, or to update the budgets. In both cases, the process is iterative since a

modification of the budget or a modification of the architecture may both lead to a new RSF, so to a new interference

pattern. This point will be discussed later, in section 6.

5.2 Interference analysis
Any resources shared by the cores of a multi-core processor is potentially a source of interferences. We focuses our

analysis on the SDRAM component which is an important contributor to interferences. Even if memory caches partially

mitigate SDRAM interference, we will consider these ones inhibited. This point will be also discussed in section 6.

[13] gives a method to compute an upper bound of the delay that suffer a core of a processor on a given period.

However, the result is not sufficiently precise to optimize interference delays. Indeed, a global delay on a given core

lead to proceed by trial and error to understand its origin.

Therefore, we provide an agent-driven approach, to compute the delay for each agent. This delay is computed for the

hyper-period of the agent set, i.e., the lowest common multiple of the agent periods. This new approach is expected to

be more precise than the job-driven one proposed in [13] since conflicts between agents can be localized more precisely,

thanks to the RSF. The agent-driven approach requires the request-driven approach of [13] and can be seen as a fork of

the job-driven approach. Hence, the maximum number of memory accesses per job, the SDRAM characteristics and the

application RSF are required as input.

The computed delay is a cost functions which has to be optimized to limit interferences. Instead of working at core level

as in [13], we aim at being able to select the agent to be optimized. Finally, delay computation first requires the

formalization of a memory model.

5.2.1 Formalization of the memory model
An application is composed of a set of agents 𝕋 executed on a predefined core. Jobs , are executed during the RSF hyper-

period of duration 𝐻𝑃. The period of an agent 𝜏 is 𝑃(𝜏). A job can be split into several job parts because of agent pre-

emption. Interference delay will be computed over the hyper-period: all following elements will be defined within this

duration. 𝐽(𝜏) is the set of jobs executed, related to the agent 𝜏. In Figure 3 for instance, 𝕋 is composed of the agents

in blue, orange, yellow, green, grey and dark-blue. Grey jobs are pre-empted by dark blue jobs.

AADL SW
architectural

model

RSF

Simulation

AADL HW
architectural

model

Rework of the PsyC model…

PsyC
model

Task
Model

Platform
Model

Interferences
effects

C
o

re
2

C
o

re
1

Static schedule

Rework of the architecture…

Analytical
Evaluation

Pivot
Model
OSD

1
2

3

4

5

Figure 2 Overview of the approach

5

We aim at computing the Worst Case of Memory Access Delay of a given agent (𝑊𝐶𝑀𝐴𝐷(𝜏)), which includes the

number of jobs executed during the hyper-period:

𝑊𝐶𝑀𝐴𝐷(𝜏) = max
j∈J(τ)

(𝑑𝑒𝑙𝑎𝑦(𝑗)) ×
𝐻𝑃

𝑃(𝜏)

The delay generated by a job 𝑗 depends on the maximum latency of one memory access (denoted by 𝑅𝐷) and on the

𝑊𝐶𝑀𝐴 - Worst Case number of Memory Accesses - required by concurrent jobs. [13] already provides a maximum delay

(RD) of one memory access depending on the characteristics of the SDRAM and on the bank organization. Indeed, a

bank shared by several cores deteriorate the SDRAM delays. Consequently, 𝑅𝐷 depends on the core. Delay is expressed

by the following formula:

𝑑𝑒𝑙𝑎𝑦(𝑗) = ∑ 𝑅𝐷𝑐𝑜𝑟𝑒(𝑗′) × 𝑊𝐶𝑀𝐴(𝑗′)

𝑗′∈conflict(𝑗)

In order to evaluate 𝑑𝑒𝑙𝑎𝑦(𝑗), we need to estimate:

 the Worst Case number of Memory Accesses (𝑊𝐶𝑀𝐴(𝑗′)),

 the set of conflicts between jobs (conflict(𝑗)).

5.2.2 Evaluation of the number of memory accesses
𝑊𝐶𝑀𝐴(𝑗′) can be evaluated using the same means as for WCET estimation: analytically on a model, or empirically using

a probe on the actual hardware or on a simulation model. In the first case, WCMAs could be a by-product of a static

WCET analysis used to estimate the time budgets. In the second case, WCMAs could be estimated using the

Measurement Based Probabilistic Analysis technique (MBPTA) based on the Extreme Value Theory [22]. In our

experiments, we rely on the classic High Water Mark approach.

5.2.3 Conflict between two jobs
A conflict between two jobs is conservatively considered to happen when both jobs are executed at the same time. If

𝑡𝑗𝑜𝑏(𝑥) is the interval of execution of job 𝑥, then we have:

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑗) = {𝑗′ ∈ 𝔍, 𝑗′ ≠ 𝑗, 𝑡𝑗𝑜𝑏(𝑗′) ∩ 𝑡𝑗𝑜𝑏(𝑗) ≠ ∅ }

In Figure 3, the red areas depict the conflicts between the blue job and the grey job.

In the absence of a precise memory access profile, all memory accesses are conservatively considered to occur in

sequence at any time during the execution of the job (Figure 3, sample memory profile). Hence, 𝑊𝐶𝑀𝐴(𝑗’) will matches

with the sum of all memory accesses occurring during the job execution.

A more precise memory model would require defining the exact time at which memory accesses occur during the job

execution (Figure 3, precise memory profile). If 𝑡𝑚𝑝 denotes the set of all time intervals where memory accesses occur

(assuming that the intersection of two sets of time interval is the set of non-empty intersections of their elements two

by two), then we have:

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑗) = { 𝑗′ ∈ 𝔍, 𝑗′ ≠ 𝑗, 𝑡𝑚𝑝(𝑗′) ∩ 𝑡𝑚𝑝(𝑗) ≠ ∅}

A job
Core 0

Core 1
Job pre-emption
Different parts of the same job

Hyper-period

Job B

Job A

Sample memory profile

Job B

Job A

Precise memory profile

WCMA

time

WCMA

time

Spread memory
profile

Conflict area

fo
cu

s

Figure 3 Example of RSF elements and memory profiles

6

In that case, 𝑊𝐶𝑀𝐴(𝑗′) will correspond only to the sum of concurrent memory accesses. Finally, the definition of a thin

memory models only depends on the ability to measure the number of memory accesses with their time of occurrence

during the execution of the job.

After computing the interference delay for each agent, we must select the conflicts to deal with. We propose to help

developers by automatically identifying the set agents requiring a particular attention, i.e., the set of agents for which

the delay is greater or equal than a threshold T and which budget must be analysed carefully.

The set is defined as follows: instead of using delay of an agent, we deal with delay of its jobs. A matrix M stores the

conflicts such as 𝑀[𝑖][𝑗] represents the delay generated on job 𝑖 by job 𝑗 (𝑀[𝑖][𝑖] = 0). If 𝑀[𝑖][𝑗] and 𝑀[𝑗][𝑖] are both

upper than the threshold value, then the conflict between the both jobs must be avoided. Note that if one of both

values is upper than the threshold value, then the conflict should be avoided “if possible”.

This method only provides an approach to decide the conflicts which have to be resolved first. Note that for a critical

software, all conflicts must be analysed carefully. Finally, intuitively, two agents of a program with a high level of

memory access should not be executed simultaneously.

6 Experiments and Results

6.1 The TwIRTee Case Study
Our approach has been applied and evaluated on the software of a 3-wheel robot – TwIRTee – currently under

development at IRT. TwIRTee’s role is to guide visitors from the IRT building entrance desk to a designated meeting

room or office. It is used as a demonstrator for various research activities on dependable embedded systems, including

Design Space Exploration [23], formal verification [24] etc. TwIRTee is composed of two redundant channels configured

as MASTER / SLAVE. The application handling the master/slave management has been retargeted for the Asterios and

T1040 platform.

An overview of TwIRTee functional model is given on Figure 4. The complete application is composed of the following

functions:

 Redundancy manager selects the role (master or slave) of each channel.

 Mission manager is used to compute the missions of the robot, i.e., the sequence of waypoints to pass-by to

move from a source point to a destination point ;

 Localization locates the robot using odometry, in-door UWB positioning system sensor data, hybridized using

a Kalman filter;

 Tracking computes the longitudinal and rotational speed setpoints to follow the programmed track;

 Speed selector selects the robot’s speed according to the applicable constraints;

 Simulator (GPS, compass, odometer) is used to simulate TwIRTee sensors / actuators. Basically, it computes

the future position according to the current position and the selected speed.

 Ethernet manages the communication between the redundancy managers of both channels.

TWIRTEE

c2c1

Channel 2

Redundancy
ManagerMission Manager

Tracking

Speed Selection

Simulator

P
o

si
ti

o
n

Localization

role

Redundant channels

Figure 4 TwIRTee functional model

7

As a remark, Figure 1 is the RSF of TwIRTee application without enhancement to limit interferences. The next section

precisely describes the different steps of one iteration. Results and convergence of our method also will be discussed.

6.2 WCMA estimation
Instead of using a probe on the hardware to estimate the WCMA of each agent, we have used the VLab [23] virtual

platform to run the unmodified binaries of the embedded software and to count the memory accesses (fetch, write,

read) using VLAB’s advanced debugging and tracing features. Table 1 provides WCMA results for each agent.

Agent Fetch Read Write

Redundancy Manager 99 891 39 118 27 333

Mission Manager 1 841 841 732 311 556 781

Localization 290 389 113 262 58 411

Tracking 175 948 72 214 56 161

Speed Selection 71 935 27 964 19 483

Simulator 85 181 26 671 16 842

Ethernet 11 645 4 514 4 329
Table 1 Number of the memory accesses according to the studied agent.

As a remark, the Mission Manager seems to require a lot of memory accesses. Additional investigation shows that the

peak number of memory accesses occurs during the initialization phase, when the map is consulted to compute the

path followed by TwIRTee using the Dijkstra algorithm. In all other phases, the number of memory accesses is much

lower (around 200000). Note that the number of accesses for each task is known, we can now compute the maximum

delay encountered by each agent on the hyper-period.

6.3 Delay computation
To compute the delay, we have developed a tool – BRaMI – to compute the interference delay. This tool represents

around 6400 lines of Python code. BRaMI takes as inputs the memory profile of agents, each profile being characterized

by a unique time interval and a number of memory accesses (fetch, load or store) for that interval. The more precise

model proposed in the previous section (i.e., a set of (time interval, number of accesses) is not used yet).

Agent Fetch (ms) Read (ms) Write (ms)

Ethernet 87,17 34,22 24,23

Mission Manager C1 51,98 20,67 15,71

Mission Manager C2 103,95 41,33 31,43

Redundancy manager C1 5,64 2,21 1,54

Redundancy manager C2 5,64 2,21 1,54

Localization C2 0,66 0,26 0,24

Simulator C2 0,66 0,26 0,24

Speed selector C2 0,66 0,26 0,24

Tracking C2 0,66 0,26 0,24
Table 2 Delay due to interference memories in ms

In our case, results have been computed using the characteristics of the T1040 SDRAM4, the RSF provided by Figure 1

and the memory profile provided by Table 1. Table 2 regroups interference delays computed bin BRaMI.

The conflicts between jobs are reported on Table 3. A threshold value of 2ms is used to discriminate critical conflicts.

The number in brackets matches with the id of the job. For instance, Mission Manager C1 and Mission Manager C2

conflict must be avoided in the second part of the RSF. This conflict does not exist in the first part (Figure 1).

Critical conflicts (delay > 2ms) Other conflicts

Redundancy Manager (0) C1 vs Redundancy Manager (0) C2
Redundancy Manager (1) C1 vs Redundancy Manager(1) C2
Mission Manager (1) C1 vs Mission Manager (1) C2

Ethernet(0) vs mission Manager C2 (0)
Ethernet(0) vs localization C2(0)
Ethernet(0) vs tracking C2(0)
Ethernet(0) vs speed selection C2(0)

4 SDRAM Reference: MTA18ASF1G72AZ-8GB: information can be found in the SDRAM datasheet. Required information
to compute delays are described in [13].

8

Ethernet(0) vs simulator C2(0)
Ethernet(1) vs localization C2(1)
Ethernet(1) vs tracking C2(1)
Ethernet(1) vs speed selection C2(1)
Ethernet(1) vs simulator C2(1)

Table 3 List of conflicts

6.4 Interference reduction
Once the interferences have been detected, the developer can either increase the budgets of agents involved in critical

conflicts, or try to reduce the level of interferences.

To achieve this reduction, we have studied several strategies. The main issue is the extreme sensibility of the RSF to a

modification of the budgets or a modification of the temporal constraints expressed in the PsyC program. More often

than not, a modification completely changes the RSF, which make difficult to solve the memory interference issues.

However, two main strategies have been successfully tried: separating accesses in space, or separating accesses in time.

The first strategy simply consists to dedicate each bank of the SDRAM to a single core. As it is possible to precisely

allocate a memory region to a given agent, this strategy can be easily applied.

The second strategy consists to separate in time the executions of the conflicting agents.

Asterios provides a mechanism to limit latency as explained in the guide reference [25]. Normally, in a LET application

an agent A must wait for the output time of an agent B as described by Figure 5. The zero latency communication

mechanism is implemented using fractional ticks. A fractional tick attached to a given clock is a virtual tick which always

occurs between two consecutive ticks of this clock. The precise position of this tick is only known at the RSF generation

phase. This object is then used to position the execution of an agent before or after this fractional tick. In addition, to

fully use the zero latency mechanism, temporal variable or stream variable has to be defined using this fractional tick.

A fractional clock basically expresses a temporal constraint (before the tick or after the tick). So it can be used to impose

the relative position of the execution of two agents, without modifying the behaviour of the communication means. As

a remark, several fractional ticks can be defined for a given clock and then, it is possible to position an arbitrary list of

agents if the defined constraints are not inconsistent. In addition, agents using the same fractional tick as reference can

be executed by different cores.

Some other strategies can be used in specific cases. One strategy could be to allocate memory-intensive agents to the

same core in order to serialize all memory accesses, and suppress interferences. This simple strategy is obviously not

always applicable due to the limited processing capability of a core, or due to possible core collocation or segregation

constraints among agents. Another strategy was to define a “phantom agent” P which would perform no actual

processing but would be simply used to occupy a slot in time and, consequently, prevent any other agent to be executed

at the same time on the same core, hence preventing memory conflict with any other agent on another core. In practice,

the difficulty was to position precisely the execution of P (without using fractional clocks). In addition, the time allocated

to P was definitively lost for any useful computation.

Communication

with latency

Communication

with zero latency

Agent Btick

Fractional tick

Agent A

Figure 5 Fractional tick used for zero latency communication

6.5 Discussion
The first import point concerns the fact that we have obtained a delay for an agent greater than the period of the agent

itself. This seems to be an inconsistent result, but it is justified by the fact that, in our model, the cache of processor is

9

considered disabled. Therefore, each memory access goes right to the SDRAM, leading to a very high number of memory

accesses and, consequently, a very pessimistic delay.

However, in our case, we are not interested by the absolute value of the delays, since they are simply used to indicate

interference hotspots and, later, to reduce them. In addition, we currently assume (but this needs to be justified) that

an action on the RSF that reduces memory interferences with the cache disabled, will also reduce interferences with

the cache enabled.

In Table 4, we provide a comparison between the job-driven approach of [13] and our agent-driven approach, on the

Twirtee use case. The results of agent-driven approach are deduced by summing the agent results.

 Job-driven (in ms) Agent-driven (in ms) / (job-driven as reference)

 Fetch Read Write Fetch Read Write

Core 0 217,17 85,64 62,23 144,78 (67%) 57,09 (67%) 41,48 (67%)
Core 1 218,48 86,15 62,72 112,22 (51%) 44,56 (52%) 33,94 (54%)

Table 4 Comparison of job-driven approach and agent-driven approach

Because our method is based on a fixed scheduling, we can provide a precise information for each agent and not only

for a given core. A comparison of both approaches shows that the order of magnitude is similar. Differences can be

explained by three facts: (i) we use a fixed scheduling, (ii) the Ap(t) factor (max number of memory requests generated

by the core p during the time interval t) of the job-driven approach is over-approximated, and (iii) the request-driven

approach consider that write accesses and read/fetch accesses alternately occurs, even if it is not possible.

The second important point concerns convergence of our iterative method. The main challenge encountered during

experiments was to find a predictable modification strategy of the RSF. Indeed, adding a constraint on some agents

would completely modify the RSF. As a consequence, our process is currently not always convergent for complex use

cases. Extending the toolchain with the capability to temporally segregate or aggregate the execution of set of agents

would be useful to support a convergent process. Otherwise, the only solution (not necessarily feasible in practice)

consists in exploring all possible combinations of segregation constraints on conflicting agents, without guarantee of

success.

7 Conclusion
We have proposed a combination of two engineering techniques: the use of the LET programming model implemented

by Krono-Safe’s Asterios, and a methodology to estimate the delay due to SDRAM memory interferences. Delays are

computed thanks to an adaptation of an existing work, originally with SDRAM characteristics as input and extended to

account for the RSF scheduling. Through this combination, we aim at improving the temporal guarantees given to an

application developer, in an industrial constrained process.

This method is then included in a global iterative industrial process. Experiments have been performed on a research

software representative of real industrial cases, TwIRTee. Results have been compared with the original works and show

an accuracy enhancement of computed delay.

But, a current identified block depends on the Time-Triggered LET technology used. Indeed, simplifying the interference

limitation step requires a mechanism to specifically exclude or favour concurrent executions to limit the iterations.

Hijack existing features not dedicated to interference limitation could be an option for basic cases, but it is not a general

solution if it would lead to manually rewrite the program scheduling. Another required feature is the ability to define a

memory mapping to avoid SDRAM banks shared by the same core of a CPU, which strongly degrades interference delays.

As a future work, we plan to improve our memory profile, a high source of over-approximation of the memory delays.

We consider the use of static analysis to compute a precise profile, instead of using measurement techniques, as in [5].

Indeed, with the worst case and best case of execution time of statement combined with its WCMA, it will be possible

to build a precise memory profile. Another important track is the definition of a model including a CPU cache. Indeed,

an accurate interference delay cannot be computed without a model which take caches into account. Additional

experiments are necessary, especially to use more complex memory profiles. Finally, we hope to compare our

interference delay with other existing tools, such as Platform Architect for instance.

Acknowledgements
This work is funded by the CAPHCA project. CAPHCA is supported by the French Research National Agency (ANR).

10

References
[1] T. Kelter and P. Marwedel, ‘Parallelism analysis: Precise WCET values for complex multi-core systems’, Sci. Comput.

Program., vol. 133, pp. 175–193, 2017.
[2] S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk, ‘A Unified WCET Analysis

Framework for Multi-core Platforms’, in Proceedings of the 2012 IEEE 18th Real Time and Embedded Technology
and Applications Symposium, Washington, DC, USA, 2012, pp. 99–108.

[3] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt, ‘Multi-core Interference-Sensitive
WCET Analysis Leveraging Runtime Resource Capacity Enforcement’, in 2014 26th Euromicro Conference on Real-
Time Systems, 2014, pp. 109–118.

[4] P. Bieber et al., ‘A model-based certification approach for multi/many-core embedded systems’, in ERTS 2018,
Toulouse, France, 2018.

[5] W.-T. Sun, E. Jenn, and H. Cassé, ‘Validating static WCET analysis: a method and its application’, Stuttgart, Germany,
2019.

[6] C. M. Kirsch and A. Sokolova, ‘The logical execution time paradigm’, in Advances in Real-Time Systems, Springer,
2012, pp. 103–120.

[7] S. H. Son, I. Lee, and J. Y.-T. Leung, Eds., Handbook of Real-Time and Embedded Systems. Chapman and Hall/CRC,
2007.

[8] D. Chabrol et al., ‘Time-and angle-triggered real-time kernel’, in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, 2013, pp. 1060–1062.

[9] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, ‘Giotto: a time-triggered language for embedded programming’,
Proc. IEEE, vol. 91, no. 1, pp. 84–99, Jan. 2003.

[10] E. Jenn, ‘Towards a Dependable Parallelism for Real Time Systems’, presented at the DASIA 2019, 2019.
[11] D. CHABROL, V. DAVID, P. OUDIN, G. ZEPPA, and M. JAN, ‘Freedom from interference among time-triggered and

angle-triggered tasks: a powertrain case study’, presented at the ERTS 2014, Toulouse, 2014.
[12] F. Guet, L. Santinelli, J. Morio, G. Phavorin, and E. Jenn, ‘Toward Contention Analysis for Parallel Executing Real-

Time Tasks’, 2018.
[13] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, ‘Bounding and reducing memory interference

in COTS-based multi-core systems’, Real-Time Syst., vol. 52, no. 3, pp. 356–395, May 2016.
[14] B. Andersson, A. Easwaran, and J. Lee, ‘Finding an upper bound on the increase in execution time due to contention

on the memory bus in COTS-based multicore systems’, SIGBED Rev., vol. 7, p. 4, 2010.
[15] L. Cucu-Grosjean et al., ‘Measurement-Based Probabilistic Timing Analysis for Multi-path Programs’, in Proceedings

- Euromicro Conference on Real-Time Systems, 2012, pp. 91–101.
[16] A. Schranzhofer, J.-J. Chen, and L. Thiele, ‘Timing Analysis for TDMA Arbitration in Resource Sharing Systems’, in

Real-Time Technology and Applications - Proceedings, 2010, pp. 215–224.
[17] M. Lv, W. Yi, N. Guan, and G. Yu, ‘Combining Abstract Interpretation with Model Checking for Timing Analysis of

Multicore Software’, in 2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 339–349.
[18] J. Boudjadar and S. Nadjm-Tehrani, ‘Schedulability and Memory Interference Analysis of Multicore Preemptive

Real-time Systems’, in Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering,
New York, NY, USA, 2017, pp. 263–274.

[19] K. Didier et al., ‘Correct-by-Construction Parallelization of Hard Real-Time Avionics Applications on Off-the-Shelf
Predictable Hardware’, ACM Trans. Archit. Code Optim., vol. 16, no. 3, pp. 1–27, Jul. 2019.

[20] J. Souyris et al., ‘Automatic Parallelization from Lustre Models in Avionics’, presented at the Embeeded Real-Time
Systems and Software (ERTSS), Toulouse, 2018.

[21] J. Jalle et al., ‘Bounding Resource Contention Interference in the Next-Generation Microprocessor (NGMP)’, in 8th
European Congress on Embedded Real Time Software and Systems (ERTS 2016), TOULOUSE, France, 2016.

[22] L. Santinelli, F. Guet, and J. Morio, ‘Revising Measurement-Based Probabilistic Timing Analysis’, in 2017 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2017, pp. 199–208.

[23] P. Cuenot, E. Jenn, E. Faure, N. Broueilh, and E. Rouland, ‘An Experiment on Exploiting Virtual Platforms for the
Development of Embedded Equipments’, in 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), TOULOUSE, France, 2016.

[24] M. Clabaut, N. Ge, N. Breton, E. Jenn, R. Delmas, and Y. Fonteneau, ‘Industrial Grade Model Checking Use Cases,
Constraints, Tools and Applications’, in 8th European Congress on Embedded Real Time Software and Systems (ERTS
2016), TOULOUSE, France, 2016.

[25] ‘PsyC reference guide’. Kronosafe, Jun-2017.

