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Abstract—Intelligent Transportation Systems are being de-
ployed all over the world, providing new applications and
services that could prevent accidents, help regulate traffic and
the automotive industry in designing energy efficient vehicles.
However, enabling vehicles to communicate with the rest of the
world ultimately leads to new security challenges with connected
vehicles becoming new interesting targets for malicious actors.
Thus, safeguards need to be deployed to detect malicious and
anomalous activities in vehicular communications. This paper
presents an approach to anomaly detection based on an ontolog-
ical representation of cellular vehicular communication.

Index Terms—intelligent transportation systems, anomaly de-
tection, C-V2X

I. INTRODUCTION

In recent years, the automotive industry and the research
community have engaged considerable resources on Intelligent
Transportation Systems (ITS) technologies. In fact, vehicles
nowadays embed interconnected networks that are responsible
of complex tasks in a vehicle such as cruise-control, lane-
tracking and assistance braking. These systems make decisions
based on different kind of sensors, i.e. radars, cameras, brakes,
thermometer. Enabling vehicles to share pieces of information
from these sensors with the rest of the digital world facilities
would allow the emergence of new services. These services
could help improving the efficiency of transport in terms of
safety, user experience and fleet monitoring. There are two
types of communication channels that were envisioned for this
task, namely, vehicle ad-hoc networks (VANET or V2V) and
cellular vehicular networks (CVN or C-V2X).

However, introducing new communication channels inside
vehicles also creates new opportunities for malicious actors
to disturb these new networks. In fact, there has been an
ever increasing list of attacks that were successfully conducted
against vehicles [1]–[5], some of them even allowed remote
exploitation by attackers. Specifically, the Jeep Cherokee hack
[6] by Charlie Miller and Chris Valasek had a massive impact
in the media and forced automotive companies to take into
account cyber-security when designing their vehicles.

Moreover, malicious activities are not the only threat to
connected vehicles. For example, in the case of automated
driving or collision avoidance systems based on communi-
cations. Vehicles and drivers will have to rely on knowledge
gathered from the network in order to take complex decisions.
Therefore, the integrity of data sent and received by vehicles

must be verified and safeguards need to be deployed to prevent
anomalies from disrupting these critical services.

Detecting anomalies or intrusions in network communi-
cations has been an extensive topic of research in the past
decades. The first methods were mostly based on signature
[7] and deployed in traditional information and communica-
tion technology (ICT) as well as industrial control systems
(ICS) networks. While providing good results on well-known
attacks, these types of intrusion detection schemes are not able
to detect new or variants of known attacks and heavily rely
on expert knowledge to build signatures. Therefore, statistical
and machine-learning based [8] techniques were envisioned to
cope with this limitation. However, these methods suffer from
a higher rate of false positives compared to signature based
approach, e.g. the classification of benign events as anomalies.
Furthermore, these models rely on algorithms often specialized
to specific types of anomalies that require expensive computa-
tion capabilities [9]. Most importantly, the lack of explainable
results and accurate training dataset discourage their use in the
industry [9].

However, when considering cellular vehicular networks,
we argue that such kind of systems could be successfully
embedded in tomorrow’s car. In fact, the nature of the commu-
nications occurring between vehicles and the rest of the world
differs from those of traditional ICT networks. We believe
that CVN inherit from both mobile and ICS networks as two
types of services namely vehicle-related and user-related, are
operating on the same communication channel. Vehicle-related
messages are carrying a high semantic meaning as they are
dependent on the observation of physical events from sensors
of the vehicle. On the other hand, user-related messages will
mostly consist of infotainment applications communications
such as music streaming, e-mails or map apps, which are
closely related to current smartphone traffic. Thus, the content
and frequency of vehicle-related communications are more
predictable than user-related ones. Therefore, we believe that
building an anomaly detector based on a model describing the
communication of the vehicle would be beneficial in terms of
detection capabilities, adaptation to evolution and explainable
results.

In this paper we present an anomaly detection method based
on an ontology representations of vehicular communications.
The preliminary results on the detection capabilities and the
comparisons with other methods show that the use of onto-



logical representation of information has significant impact on
anomaly detection.

The rest of this paper is organized as follows: In sec-
tion II relevant work on ontology for information security
and anomaly detection in vehicular networks is presented.
Then, section III introduces our ontological representation of
the cellular vehicular communication for anomaly detection
purposes. Then, section IV introduces the anomaly detection
process including its architecture, the algorithms that perform
the detection as well the inference rules that are used to build
the representation of the anomalies. Then, section V presents
the communication dataset along with the attack scenarios that
are used for the evaluation of our method whose results are
discussed in section VI. Finally, conclusions and future work
are presented in section VII

II. RELATED WORK

Ontologies are explicit formal specifications of terms and
relations in a particular domain [10]. They have been greatly
used in the World Wide Web in order to ease the search for
information by automated processes (web crawlers) thanks
to the use of expressive languages (RDFS, DAML, OWL...).
Such languages enable domain-specific information sharing by
experts. Ontologies were used in previous work in the field
of information security. In [11], the authors present a survey
of the use of semantics for the detection of targeted attacks.
In [12], the authors present an ontology for the detection of
application level intrusion in the hyper text transfer protocol
(HTTP).

The authors in [13] modelled intrusions in terms of attacks
directed towards a particular system component caused by a
defined input. Such input has consequences on the system
that are divided into two sub-classes, i.e. input validation
error and exploit. The attack results are divided in a class of
consequences, i.e denial of service, remote to local, user to root
or probing. In their case, they use the reasoner rules to detect
intrusions while in our case we rely on the ontology to dissect
the network traffic to search for specific classes of anomalies
in specific sub-set of the whole communication. Thus, we
only use the reasoner to build a representation of the detected
anomalies. In [14], the authors proposed a method based
on an ontology and user-defined rules to represent network
security situations in heterogeneous Internet of things (IOT)
networks. Their goal is to provide security situation awareness
based on multi-source information aggregation. In our case we
rely solely on network traffic to detect anomalies in cellular
vehicular communication.

In [15], the authors present a multi-agent based anomaly
detection system where they use two agents for the detection
process. The first agent receives packets translated into an
ontological representation and uses the inference engine to
detect known attacks signatures that are already inside the
ontology. The second agent performs anomaly detection based
on a clustering algorithm to discover new attacks.

Another similar multi-agent approach was taken in [16],
in their case the authors also created a reaction agent that
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Fig. 1: Graphical Representation of the ontology components.

manages generated alerts to create a prevention model that
reconfigures network devices based on a set of reaction rules.

Lastly, in [17] the authors present an ontology for intelligent
network forensics analysis. They designed their ontology fol-
lowing the METHONTOLOGY approach [18]. Their ontology
models a knowledge representation of the main concepts
involved in network forensic analysis such as the assets of
a network, their vulnerabilities, the impact of attacks on these
assets as well as attacker motivation and evidences showing
malicious behavior.

III. ONTOLOGICAL MODEL OF THE COMMUNICATION AND
ANOMALY DETECTION

In this section, we introduce our anomaly detection method
based on an ontological representation of the communications
occurring between vehicles and the rest of the world.

A. Modelling the communications

As stated in our introduction, we show that it is possible
to formally describe the communications of a vehicle with
the rest of the world. Such a representation allows a better
classification of the traffic in order to detect multiple types
of anomalies. In fact, since the traffic carries high semantic
meaning, it is possible to separate user-related communications
from vehicle-related exchanges.

Moreover, vehicle-related traffic can also be distinguished
between the different communicating components embedded
inside a vehicle. For instance, infotainment system updates can
be differentiated from vehicular telemetry messages.

The classes modelled inside our ontology are based on a
representation of the communications at different scales as
depicted by Figure 1. In our ontology, exchanges between
a vehicle and an Entity are modelled into Flows. These
flows are divided into Frames of fixed duration. Finally, every
Packet passing through the vehicle’s interface is assigned to
a particular Frame of a Flow. The anomaly detection process
uses features that are created when the ontology is populated.



a) Flow Attributes: Flows depict exchanges between the
vehicle and another entity, they are defined as follows:

• start date and last date: Timestamps corresponding to the
first and last packets seen on the network that are related
to the flow.

• remote host: IP address of the remote entity that is
communicating with the vehicle.

• host and remote port: ports used for the communication
by the host and the remote entity.

• initiated by host: boolean value that shows whether or
not the communication was started by the vehicle.

• transport type: type of transport protocol used (currently
either UDP or TCP).

• FrameCollection: the list of the frames that were created
for the flow

• FlowFeatures: Collection of features regarding the flow
(e.g. average number of packets per seconds)
b) Frame Attributes: Frames consist of sequences of

packets that are exchanged inside a flow during a specific
period. They are defined as follows:

• start date and end date: Timestamps corresponding to the
first packet received for the frame, the end date is fixed
and corresponds to the start+ 3 seconds.

• FrameFeatures: Collection of features regarding the
frame, these features are used to build the features of
the corresponding flow (see d. below).

• Flow: Relational link to the flow that the frame is a part
of.

• PacketCollection: Collection of packets that are part of
the frame.
c) Packet Attributes: The packets that populate the

frames are defined as follows:
• Packet size: represents the size of the packet
• Packet class: represents either the TCP flags or DNS

queries and response
• Summary: This attribute is used during the anomaly

representation phase and represents a human-readable
summary of the packet.

• Timestamp: Date of reception of the packet
• Direction: information on whether packet is inbound or

outbound to the vehicle
• Frame: relational link to the frame that the packet is a

part of.
d) Flow and Frames Features: The flow and frames

features consist mostly of key statistical attributes of the traffic
set to a flow. They range from the number packets in a
frame, their average size, the ratio of received packet versus
sent packets to the mean inter-packet gap. We maintain 44
features drawn from on a recent study [19]. Moreover, based
on our knowledge of the underlying processes that trigger the
communications, we assign a specific class to the flow, e.g.
vehicle or user-related flow.

e) Packet sequences: Network packets carry a lot of
information often represented in the Open Systems Intercon-
nection model [20]. Each layer in the model corresponds
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Fig. 2: Mape-k loop for our anomaly detection system.

to a specific function in the communication. In our work
we only consider three layers, i.e. network, transport and
application. We group session, presentation and application
in a single layer for convenience. From each of these layers
we extract interesting key information in order to determine
the semantic that the packet carries, and assign it to a specific
packet class inside the ontology. At the time of writing this
paper, our classes are based on TCP flags and regarding UDP
communications. We only consider dns queries and responses.
Every other packets are assigned to a default class.

The use of an ontology representation to model the com-
munications of a vehicle has three purposes in the anomaly
detection process. First, it allows us to extract interesting
features from the network traffic of the vehicles in a multiple-
scale manner (e.g frame-level, packet-sequence level, and
entity-level). Secondly, using inference rules on the relations
between packets, frames, flows and entities eases the anomaly
detection process while also allowing us to build contextual
information to represent the anomaly.

IV. ANOMALY DETECTION

A. Architecture of the Anomaly Detection System

We designed our anomaly detection system architecture
based on IBM’s Monitor, Analyse, Plan and Execute over a
shared knowledge (MAPE-K) feedback loop. It was introduced
in [21] and updated in [22] as a way to structure autonomic
computing systems to ease their management. Mape-k is
considered a reference for the modelling of autonomic and
self-adaptive systems.

In our case, since the anomaly detection process takes place
inside the vehicle, it can be seen as an autonomic computing
system. The general architecture of our system is depicted in
Figure 2. In this paper, we focus on the monitor, analyser
and knowledge base components. Planning and execution
components are considered in the future work section VII.

The architecture is defined as follows. We consider a
monitored system which, in our case, corresponds to the
communication of the vehicle. For each packet that flows
through the network interface of the vehicle an event is
created and handled by the monitor module. The events are
composed of the packet and a timestamp. The monitor extracts
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from these packets the attributes of the communication and
populates the ontology that is stored inside the knowledge-
base. Furthermore, the monitor module is also responsible of
creating the features of each component (e.g. Flow, Frame,
Packet).

Finally, each time a feature is computed, it triggers a
symptom that is sent to the analysis module. The analysis
module is in charge of running the anomaly detection process
based on the symptoms and attributes from the communication
that are stored in the knowledge base.

Therefore, the anomaly detection process is divided in two
parts. The first part is responsible for running the anomaly
detection process based on the features, while the second
part propagates detected anomalies inside the knowledge base
using an inference rule. These two aspects of our systems are
detailed in the following subsections.

B. Unsupervised Machine Learning Algorithm: Hierarchical
Temporal Memory (HTM)

HTM is an online sequence memory algorithm based on
theories of the functioning of human brains and particularly
the neocortex. It was originaly introduced by Jeff Hawkins and
Sandra Blakeslee in [23]. It was successfully used to detect
anomalies in streaming data in [24].

HTM systems are based on three building blocks: encoders,
spatial pooling and temporal memory. Encoders are key com-
ponents of the HTM algorithm, their goal is to encode input for
the algorithm into a sparse distributed representation (SDR) as
depicted in Figure 3. These representations are composed of
bit-arrays defined as follows [25]:

• Semantically similar data should have overlapping bits.
• SDRs are deterministically created, i.e. the same input

must result in the same output.
• Output of encoders should have the same dimensionality

(length of the bit-array).
• Outputs should have the same number of active bits

(sparsity).
These SDRs are used by the spatial pooler for the learning

and prediction of the algorithm. The spatial pooler represented
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Fig. 4: Spatial pooler representation. Arrows represent the
proximal connection of columns of the spatial pool to a
particular input of the SDR. Dotted lines represent distal
connections between cells inside the spatial pool

in Figure 4 is composed of columns of cells. Each cell has two
types of connections, namely proximal and distal. Proximal
connections are responsible for connecting a column of the
spatial pooler to a particular input. On the other hand, the
distal connections connect cells of the columns to other cells
of the spatial pooler.

The algorithm uses these connections to learn the transition
of patterns inside SDRs. In fact, each time an input is received,
columns that are connected to this input are triggered if their
proximal connections are connected to an active bit of the
SDR. Then each cell of an active column, uses its distal
connections to turn into a predictive state all the cells that it is
connected to. If the next input triggers these predicted cells,
the distal connections are reinforced. Thus, the algorithm is
constantly updating itself in order to build a predictive model
of the data that it is observing. For each correct prediction it
reinforces these links inside the data.

Currently, we run HTM on a combination of feature at-
tributes defined for the frame class. Thus, anomalies are not
generated for a single packet but for entire frames of a same
flow.

Future work will involve the packet analysis based on the
packet class that we extract from the traffic. Combining these
two approaches will allow us to improve the detection of
different types of anomalies. For instance, a volume anomaly,
e.g. a denial-of-service, would be detected by comparing
different features of the frames of a flow without having to
consider every class of packet. In the meantime a sequence
anomaly, e.g. a syn-scan, could be detected by analysing
unusual sequences of packets classes.

C. Anomaly representation and inference rules

a) Anomaly representation: An important element of our
model is the representation of anomalies in a way that allows
for sharing and understanding generated alerts.



We represent detected anomalies inside our ontology with
the following attributes:

• Root: The tuple Entity, Flow, Frame that triggered the
anomaly.

• ContaminatedFrames: The list of Frames and therefore
Packets, that are closely related to the anomaly and were
also classified as anomalous be cause they were received
just after the generated anomaly. We only classify a num-
ber of frames (N) received after the generated anomaly
in order to avoid generating too large anomalies.

• SuspiciousFlows: The list of Flows that the anomalous
remote entity might have with the vehicle.

• ContextFrames: The list of Frames that were active when
the anomaly was detected.

In order to understand the anomalies, we retrieve the context
surrounding a detected anomaly using inference rules. Infer-
ence rules have two roles in our anomaly detection system.
We use them to link a detected anomaly to the corresponding
Packets, Frames and Flow inside the knowledge base, allowing
us to detect anomalies in a efficient way. Secondly, we use
them to build representations of the detected anomalies which
could be used to share the anomaly with other detection agents
or store them for evidence purposes inside the vehicle.

b) Root inference rules: The inference rules are based on
the composition relationship materialized in our ontology by
the partOf axiom. Said axiom binds packets to frames, flows
and entities:

• partOf(x, y) ∧ isAnomalous(x) → isAnomalous(y)

Therefore, if a packet is deemed anomalous, the frame as
well as the flow are also categorized as anomalous. Finally, the
entity that took part in the communication with the vehicle is
also categorized as anomalous.

We use similar rules to build ContaminatedFrames, Suspi-
ciousFlows and ContextFrames. In fact, if a packet triggered
an alert, it would be beneficial for an operator to get:

• All other flows that the anomalous entity uses to com-
municate with the vehicle.

• Every packets that were also captured during this
anomaly.

• Other packets of the anomalous flow.

These rules are defined as follows:

1) ContaminatedFrames:
• isAnomalous(Frame(x)) ∧ hasDistance(x, d) ∧

lessThan(d, N)
∧ isNext(x, Frame(y)) → isAnomalous(y)
∧ hasDistance(y, add(d, 1))

2) SuspiciousFlows:
• hasRoot(Anomaly(a), Entity(x)) ∧ hasFlowCollec-

tion(x, c) ∧ partOf(c, Flow(f)) ∧ ¬ isAnomalous(f)
→ hasSuspiciousFlow(a, f)

3) ContextFrames:
• hasRoot(Anomaly(a), Frame(x)) ∧ Date(x, Tx)

∧ Start(Frame(y), s) ∧ End(Frame(y), e) ∧

greaterThan(Tx, s) ∧ lessThan(Tx, e) → isPartOf-
Context(a, f)

We limit the number of packets returned by the Contaminat-
edFrames rule as it could have a detrimental effect on the
understanding of the anomaly if it returns too much informa-
tion, especially because categorizing the flow as anomalous
will retroactively contaminate every packet inside it. Thus,
we returns packets depending on the distance (d) between a
frame where a packet was deemed as anomalous and other
frames. Therefore, attention is drawn to the closest contextual
knowledge of the anomaly.

V. ANOMALY DATASET CONSTRUCTION

In order to validate the design of our anomaly detection
system, we created a communication dataset based on an emu-
lation environment. This section introduces the communication
and anomaly generation procedures that we used to build the
dataset.

A. Emulation environment

Anomaly detection applied to network communications
is well known to encounter issues when considering train-
ing datasets. Quite often, communication datasets used by
researchers cannot be published due to privacy concerns
or by law restrictions. Therefore, results on new methods
for anomaly detection lack repeatability. Furthermore, recent
datasets such as the ones introduced in [26] are mostly
dedicated to classical ICT networks. In fact, to our knowledge
there is no real communication dataset available regarding
connected vehicles. Thus, we created our own dataset using
an emulation environment dedicated to a cellular vehicular
network named Autobot [27]. We followed the guidelines
introduced by Shivari et al. in [28] and summarized as follows:

• Realism, in order to show the effects of attacks and
anomalies on the network, they are being emulated in
AutoBot and not post inserted inside a dataset.

• Evaluation, since we are in control of the environment,
generated datasets are deterministically labelled.

• Anomalous Activities, at the time of writing this ar-
ticle we implemented several anomalies such as DNS-
tunnelling attack, Network Scans and telemetry anomalies
(see subsection V-B).

The emulation runs in a completely isolated environment
using docker containers. Each container acts as a vehicle
connected to a docker network as depicted in Figure 5. In
order to respect cellular network behaviour, netem [29] is
used to shape the latency and bandwidth of every virtual
interface for every container. The latencies and bandwidth
were determined based on actual measurements done inside a
vehicle cruising on the ring road of Toulouse. Autobot allows
the emulation of up to 300 vehicles on a server running Ubuntu
16.04 with 32 processors (2.6 GHz) and 64 gigabytes of RAM.
In our scenario, we emulate a single vehicle and capture the
communications on its virtual interface.

Vehicles run several applications that generate traffic which
could appear in connected vehicles in the future.
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a) Vehicle Telemetry: In order to enable the new ITS ser-
vices presented in the introduction, vehicles will have to share
information they gather from their sensors with remote servers.
To this end, an exchange format was created by a consortium
of automotive industrial. This message format, Sensoris, is
meant to enable different parties to share knowledge between
each other regardless of the vehicle’s manufacturer. We embed
inside every vehicle container a Message Queueing Telemetry
Transport (MQTT) client that sends Sensoris messages to
another container that acts as a server. The data that is sent in
these messages was extracted from real-life vehicles that are
used on the E-horizon project at Continental Digital Services
France for research and development purposes. The data con-
tains information ranging from accelerometer to temperature
and GPS coordinates.

We extended Autobot in order to increase the realism of the
communication dataset by adding infotainment applications
that are likely to exist in future vehicles.

b) Infotainment applications: In fact, in order to improve
the experience of users when driving, vehicles will likely pro-
vide services that are currently only available on smart-phones.
We created a containerized music streaming application based
on the Spotify API as well as a map navigation application
based on Waze.

B. Emulated Anomalies

We generated anomalies based on scenarios drawn from
a survey introduced in [1]. Furthermore, we also performed
attacks inspired by real-life situations that were reported in
the last few years. However, we want to draw the attention
of the reader to the fact that technical details on how to
perform the exploits are left out of these reports. In fact, while
vehicles tend to be more connected, it is not always possible
to perform firmware updates over the air. Thus, we created our
own exploits based on the data available. Finally, most attacks

Vehicle
IP

Telemetry
Server
IP

Infotainment
Servers IPs

Attacker
IPs Protocols

10.0.0.5 10.0.0.6

104.199.64.136/23
130.211.34.59
130.211.9.172
140.93.5.46
157.240.195.35
172.217.0.0/16
179.60.192.36
216.58.198.67
35.201.119.145
66.102.1.154
74.125.140.155

10.0.0.1
10.0.0.3

mqtt (85.4%)
https (13.6%)
dns (0.6%)
http (0.1%)

TABLE I: IP Repartition and relevant protocols present inside
the dataset

presented in this paper require that vehicles are provided
with a public IP address, or alternatively that mobile network
operators allow device-to-device communication. However, we
consider this pre-requisite to be very plausible as the upcoming
5G1 allows device-to-device communications.

a) Dataset Generation: At the time of writing this paper,
our dataset includes four different scenarios that were per-
formed over a four hour period inside the emulation environ-
ment. The traffic captured during this period is summarized in
the Table I.

b) Normal Behaviour: In the first hour, we emulate nor-
mal communication behaviour during which the vehicle starts
the telemetry service as well as the infotainment applications.

c) Network Scans: During the second hour, an attacker
tries to find listening ports of a vehicle by sending specially
crafted packets. It is often considered as the first step that
attackers perform in order to gain access to a system. We
used nmap to perform the scan.

d) Remote Exploitation: Based on a discovered vulner-
ability an attacker is able to remotely break into the vehicle
infotainment system and perform malicious activity such as
shutting down the system or extracting private information
about the users of the vehicle. This scenario was drawn from
an actual exploit that was done by Computest and reported
in [30]. In our case, we decided to perform a data extraction
attack via DNS-tunnelling using a tool named dnscat2.

e) Anomalies in Vehicle Telemetry: We generate anoma-
lies in the vehicle telemetry messages generated by the vehi-
cles. For this scenario, we emulated a malfunction inside the
vehicle’s telemetry service that prevents it to send information
over the telemetry service. In this case, the connection with
the remote server stays active but no messages are sent by the
vehicle.

VI. EVALUATION

In this section, we present a preliminary evaluation of our
anomaly detection system. We highlight the importance of
using the inference rules to improve the detection rate of the
system. Then, we compare the detection capabilities of our

1http://5gaa.org/



Feature Bit array
length (n) Sparsity resolution

startframe 2048 41 0.001
pkts/s 2048 41 0.001

meanfpktl 1500 31 0.01
avgpktsize 400 21 0.001
category 400 21 NA

TABLE II: Weights for the encoding of the features inside the
spatial pooler.

method against popular machine learning algorithms, e.g. one-
class support vector machine (OCSVM) and Density-based
spatial clustering of applications with noise (DBSCAN).

A. Feature Selection

In [26], the authors present an analysis of the most important
features by class of attack. In order to test the detection ca-
pabilities of our method we used the most common important
features given the attacks and anomalies that we generated
inside our dataset. The features we used are drawn from the
frames that populate the ontology and represent the following
attributes of the communication occurring for the duration of
the frame:

• mean outgoing packet length (meanfpktl)
• the number of packets per second (pkts/s)
• the average packet size (avgpktsize)
The HTM algorithm is based on time series therefore we

also use the timestamps that represent the creation date of a
frame. Furthermore, in order to give the algorithm knowledge
on the type of traffic it is analysing, we defined an encoder for
the category of traffic. This encoder represents the class of the
flow. Lastly, for the anomaly detection process the algorithm
has to predict the values of the number of packets per second.
The anomaly score is calculated by comparing the prediction
results against the actual value of the next received frame.
We consider the detection of an anomaly when this score is
superior to some threshold (in our case 0.9).

The weight of each feature inside the encoding of the whole
input for the spatial pooler was defined empirically and the
values are presented inside the Table II

B. Detection Results

In order to evaluate our model, we perform the anomaly
detection based on these features and three different set-ups,
i.e. without the ontology, with the ontology and no inference
rules, and finally with ontology and the inference rules. These
set-ups differ in the way they extract the features from the
traffic and how the anomaly detection is performed.

In the first set-up, we extract the features from all the com-
munications occurring during a certain time window, which
corresponds to Entity Frame (see Figure 1). The second and
third set-ups both use the ontology to extract the features from
the traffic. The third set-up uses the inference rules in order
to improve the detection results.

The results are presented in the Table III. The label column
represents the frames that contain either normal or anomalous

Label No Ontology Ontology
No Inference Inference

False
Positive
Rate

2.3% (97/3291) 3.4% (298/8736) 14% (1228/8736)

Scan 0% (0/2) 0.6% (7/1024) 0.6% (7/1024)
Data ex-
traction 1.4% (3/211) 9.4% (25/264) 39.0% (103/264)

Telemetry 3.7% (1/27) 27.2% (3/11) 90.9% (10/11)

TABLE III: Frames classified as anomalies according to dif-
ferent feature extraction methods.

Fig. 6: Detection results for HTM using the ontology without
inference.

traffic, the false positive rate row represents the ratio of normal
frames that were classified as anomalous. The other columns
represent the ratio (n/m) of n frames that were classified as
anomalies out of m. We can see that the use of the ontology
has a great impact on the true positive rate while having
relatively low impact on the false positive rate of the detection.
Moreover, the use of the inference rules significantly increases
the detection ratio of the telemetry anomaly but also has great
impact on the false positive rate. Lastly, it is worth noting that
it has no impact on the detection rate of the scan attack.

C. Results interpretation

The fact that the scan attack is not detected very well by
the system while using the ontology to build the features of
the frame is mostly due to the fact that these features are
based on a particular flow. In fact, when an attacker performs
a scan he sends specially crafted packets to different ports of
the victim. In this case, our ontology will build a flow each
port that the attacker tries. Furthermore, since the inference
rule for contamination is based on the flow, the detection ratio
for the scan cannot be improved by this method.

The high rate of false positive can be explained by a close
analysis of the dataset. The Figure 6 represents the anomaly
detection results of the HTM algorithm using the ontology



Label HTM OCSVM DBSCAN
S1 S2 S1 S2 S1 S2

False
Positive
Rate

6.6% 3.4% 0.16% 37.1% 68.3% 0%

Scan 0.1% 0.6% 97.7% 97.7% 0% 0%
Data ex-
traction 6.1% 9.4% 0% 96.2% 100% 0%

Telemetry 9% 27.2% 0% 90.1% 100% 0%

TABLE IV: Frames classified as anomalies according to
different feature extraction methods.

without inference. The horizontal dotted line represent the
detection threshold used to classify an anomaly. The vertical
blue lines represent the timestamps where the emulation
environment has to restart for the next scenario (see section V).
Lastly, the red dots represent the anomalous frames inside the
dataset.

As previously stated, the HTM algorithm is unsupervised.
Therefore, it does not need training and is able to start the
predictions as it discovers the dataset. Thus, the fact that there
is a high number of anomalies detected in the beginning of
the dataset is normal. Furthermore, the fact that all commu-
nications are stopped abruptly at the end of each scenario
generates numerous anomalies when new communications are
encountered in the following scenario.

This behavior is also shown by the detection of the teleme-
try anomaly that is generated during the last scenario. The
anomalies generated during this scenario show that the first
few frames are classified as anomalous before being treated as
benign, then right after the anomaly stops the algorithm detects
a few anomalies. This shows that the HTM algorithm is able
to adapt itself to new communication patterns, the drawback
of such behaviour is that it also triggers false positive when
the pattern changes in normal situations.

D. Comparison with OCSVM and DBSCAN

We ran a comparison benchmark of the HTM algorithm
with two other algorithms, One-class support vector machine
and Density-based spatial clustering of applications with noise.
The hyper-parameters for OCSVM and DBSCAN were com-
puted by minimizing a cost function over a search space
representing the hyper-parameters using hyperopt [31]. The
cost function is the number of anomalies detected by the
algorithms that has to be minimized.

The results of this benchmark are shown in Table IV. We
tested the different algorithms based on every feature available
inside the ontology (S1) and based on the features presented
in the previous results (see Table III), i.e. packets per seconds,
mean outgoing packet length and mean packet size.

Thus, we can see that the HTM algorithm is the only one to
detect at least one frame of every anomaly while maintaining a
relatively low false positive rate using every feature available.
However, we note that OCSVM is very efficient at recognizing
the scan attack with very low false positive rate while using
every feature.

Nevertheless, when reducing the number of features the
detection results of the OCSVM and DBSCAN algorithms
become unreliable with a very high rate of false positive. On
the contrary, the detection of the telemetry anomaly by the
HTM algorithm are improved when a smaller set of features
are used. Using fewer features also improves the false positive
rate of HTM.

E. Limitations

These preliminary results describe a promising first step in
the implementation of a complete anomaly detection system.
However, several limitations remain. First, the size of the
communication dataset and the range of attacks that were
performed leads to difficult training for the DBSCAN and
OCSVM because there is not enough occurrences of the
anomaly classes. However, the results obtained by the HTM
algorithms lead us to think that it will perform well under
larger datasets. Finally the false positive rate also needs to be
reduced for such a method to be embedded successfully inside
vehicles.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we introduced an anomaly detection method
based on an ontological representation of cellular vehicular
communication. We showed how using a semantic approach
to packet analysis could reduce the number of features that
are needed for the anomaly detection process. Moreover, we
presented how our model is integrated to an anomaly detection
system based on IBM’s Mape-K loop [21], [22] that uses the
Hierarchical Temporal Memory algorithm for the detection
process in combination with inference rules.

In order to evaluate our approach we presented our dataset
creation method based on a emulation environment dedicated
to cellular vehicular networks. Finally, we presented a perfor-
mance comparison against other algorithms used for network
anomaly detection using our dataset.

These encouraging preliminary results constitute a first step
in the implementation of a complete anomaly detection system
that will be able to run on its own inside vehicles. Several
subsequent work is still needed in order to fulfil this goal; it
is discussed in the next subsection.

B. Future Work

First, the training dataset needs to be improved in order to
test a larger range of attacks and anomalies that our method
is able to detect. To this end, we plan testing the algorithm
under a greater range of attacks, such as other types of scans
and denial-of-service attacks as well as ransomware attacks.

Secondly, we will embed new communication applications
such as updates over-the-air to improve the realism of the
dataset. We believe that these types of applications will
become more and more popular. In fact, to manage vehicle
fleets and provide users with new applications, updates will
need to be sent over the air to vehicles. Such applications are



already used. For example during Hurricane Florence2 Telsa
car owners were allowed to increase the range of their vehicles
if they were located in the path of the Hurricane.

Moreover, to improve the detection results an optimization
of the features and parameters of the HTM algorithm will be
conducted. To embed other key aspects of the communication
that are often used as attack vectors such as HTTP keywords
or wrongly crafted packets, the ontology will also be extended.

Finally, to build a complete anomaly detection system,
future work on our design will involve the alert sharing process
that could be put in place in order to help other vehicles detect
more efficiently anomalies that were already experienced by
other vehicles.
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[18] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology:
from ontological art towards ontological engineering,” 1997.

[19] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features.” in ICISSP,
2017, pp. 253–262.

[20] H. Zimmermann, “Osi reference model-the iso model of architecture for
open systems interconnection,” IEEE Transactions on communications,
vol. 28, no. 4, pp. 425–432, 1980.

[21] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, no. 1, pp. 41–50, 2003.

[22] A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” 2006.

[23] J. Hawkins and S. Blakeslee, On intelligence: How a new understanding
of the brain will lead to the creation of truly intelligent machines.
Macmillan, 2007.

[24] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, 2017.

[25] S. Purdy, “Encoding data for htm systems,” arXiv preprint
arXiv:1602.05925, 2016.

[26] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSP, 2018, pp. 108–116.

[27] Q. Ricard and P. Owezarski, “Autobot: An emulation environment
for cellular vehicular communications,” in Proceedings of the 2019
IEEE/ACM 23rd International Symposium on Distributed Simulation and
Real Time Applications. IEEE Computer Society, 2019.

[28] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[29] S. Hemminger et al., “Network emulation with netem,” in Linux conf
au, 2005, pp. 18–23.

[30] Computest, “The connected car-ways to get unauthorized ac-
cess and potential implications,” Online: https://www.computest.nl/wp-
content/uploads/2018/04/connected-car-rapport.pdf, 2018.

[31] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
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