
ED-12C Compliant Autonomous Decision Making for UAVs

Category: abstract of regular paper;

Authors: Nick Tudor and Colin O’Halloran of D-RisQ Limited

Keywords: ED-12C/DO-178C, Certification, UAVs, Cost savings, Formal Methods, BVLOS

Introduction

The project exploited core skills from the combined project team of D-RisQ and Callen-Lenz which ranged from

software design, verification and validation as well as Unmanned Air System (UAS) control systems. Through

our high integrity approach to design, proof and testing we addressed the system verification, validation and

certification challenge, looking to adopt a similar approach to that used for civil manned aircraft certification

using international standards such as ED-12C/DO-178C and specifically the formal methods supplement ED-

216/DO-333. Both project partners have had discussions with the UK Civil Aviation Authority on UAS

certification for beyond line of sight or over the horizon operations and have contributed to various

internationally recognised publications related to software and UAV/drone certification.

The core of the project examined the challenge of providing a level of integrity (appropriate to the risk of

planned operation) for a cognitive system for UAS autonomous behavior. The current state of the art does not

allow regular Beyond Visual Line of Sight (BVLOS) operations of UAVs because there is a major problem of

assuring collision avoidance decision making. While we assumed adequate sensing for this project, some of

which was also trialled as part of this project, the sensing aspect is out of scope for this paper. An increase in

both capability and safety would allow commercial UAS operators and users to undertake more complex tasks

with increased capability. In addition, we examined the cost savings through the use of two tools. The first

tool supported the articulation of requirements for embedded reactive systems, such as a control system. The

tool was designed to make requirements reviewable by a developer and hence by a certification authority, but

precise enough to be guaranteed to be verifiable. The second tool automatically verified a Simulink/Stateflow®

design against the requirements using off-the-shelf verification tools, if a verification failed a script was

generated to explain the non-compliance using simulation in Simulink®. We addressed the issue of hazard

avoidance within a near vicinity and Callen-Lenz addressed the task prioritisation and planning. This paper will

examine the overall approach while focussing on the verification technology as the key enabler for BVLOS

operations at a price the market can afford.

Background and Foundation Work

The foundations of the approach taken were originally used in some automotive work under and ISO26262

ASIL D project (PICASSOS). The techniques included the use of a formalised expression of the requirements.

This required specialist skills to write the specification even though the training for this was relatively light and

engineers were able to use the technique within a few days of on-line and remote assistance training. The

tools were also somewhat under-developed and required some human intervention to get results.

Nevertheless some very positive results were obtained in terms of error detection and speed of use (more on

this aspect later – see ‘Costs’). We then deployed the techniques to provide decision making software for an

autonomous unmanned surface vessel to ensure compliance to the rules-of-the-sea for collision avoidance

(known as ‘COLREGS’). The system requirements were a little under-developed, but again it was shown what

was possible with successful sea trials. We wanted to then push the work into the highly challenging air

domain.

Project Overview

The project was staged into 2 main phases with the initial capability aimed to produce a design for the systems

and software architecture along with a first stage decision making capability. The purpose of the first Phase

was to explore potential designs and validate requirements using simulation and was not expected to be

flown. This approach enabled a low cost path to quickly explore behaviour. The second Phase would then

adjust the previous design decisions made and add extra functionality that would enable a more sophisticated

behaviour. The tools from D-RisQ were also developed alongside the UAV software development. The main

demonstration for the project was to fly 2 UAVs at each other, one with the decision making software flying on

a pre-determined route and autonomously making decisions, the other without any of that software but

simply flying on an opposite track. A third UAV was fitted with a camera which was fully in the control of a

ground based operator. Finally, a series of increasingly complex scenarios were to be flown in simulations.

Formal Specification Selection

Within ED-216/DO-333, there are 4 additional Objectives that have to be met to use a formal technique. The

main one of concern is focussed on justifying that the formal specification language and analysis techniques

can deliver results that would support the certification Objectives. We have chosen CSPm for requirements

and design because of the natural compositionality of the language. It enables representation of the

environment in which a system (or software is intended to interact and can in principle be used to exhaustively

check that desired properties hold and even that undesired properties are not present. There are well-known

practical limitations with the use of model checking which can be avoided if the formal description is carefully

designed-in to enable scalability. This is therefore how we ensure that the process can be automated. CSP

was first described in a 1978 paper by C.A.R Hoare1. Professor Sir Tony Hoare (one of the world’s foremost

computer scientists) developed CSP, a formal mathematical language for describing the patterns of interaction

between systems operating together, such as parallel processors, computers talking to each other, and the

components of an individual microchip. CSP now has decades of academic development and industrial use

behind it. There have a been a number of publications2,3 and the book Communicating Sequential Processes

(CSP) is available for free download at: http://www.usingcsp.com/. The other 3 Objectives are mainly a part of

tool qualification and are not discussed in detail in this paper and a summary of applicable the references from

ED-216/DO-333 are in Table 1 below.

Objective Reference Section

Objective Activity

FM.A-3.8,
FM.A-4.14,
FM.A-5.10

Formal analysis cases and
procedures are correct

FM.6.3.6.a
FM.6.3.6.b

FM.6.3.6

FM.A-3.9,
FM.A-4.15,
FM.A-5.11

Formal analysis results are
correct

FM.6.3.6.c FM.6.3.6

FM.A-3.10,
FM.A-4.16,
FM.A-5.12

Requirements formalisation is
correct

FM.6.3.i FM.6.3.i

FM.A-3.11,
FM.A-4.17,
FM.A-5.13
FM.A-7-10*

Formal Method is correctly
defined, justified and
appropriate

FM.6.2.1 FM.6.2.1.a
FM.6.2.1.b
FM.6.2.1.c

Table 1 - DO-333 Additional Objectives

However, in summary, it is required to show that the formalisation process is correct, that the analysis cases

are correct and that the results are correct. None of these are necessarily easy to accomplish and require a

considerable amount of evidence to show that, in particular, the formalisation process is correct.

1
 Communications of the ACM Volume 21 Issue 8, Aug. 1978 Pages 666-677

2
A.W. Roscoe. “The Theory and Practice of Concurrency”, Prentice-Hall (1997)

3
 A.W. Roscoe. “Understanding Concurrent Systems”. Springer (2010)

http://www.usingcsp.com/

Requirements and Design

This was an experiment to explore the art of the possible but with the intent of this being a final confirmatory

project that the tools could work, the decision making software could be built and verified using the tools, all

with the necessary support material for certification. A lot of detailed contextual investigation was undertaken

to ensure that we had correctly identified the environment in which the UAV would operate. We specifically

needed to be able to control the inputs to the decision making as we had to be sure that the aircraft was

reacting correctly to the right inputs. As such we used only a single input from ADS-B as the source for location

information of possible conflicting objects (airborne or otherwise). It is acknowledged that other sensors

would be required in various parts of the spectrum to enable beyond visual line of sight operations in practice.

A Systems Requirements Document (SRD) was developed and agreed for the decision making software for

Phase 1. This was then transformed into a Software Requirements Specification (SRS) to describe the software

High Level Requirements (HLR). This automatically gives a formal semantics to the natural language

expressions in machine readable Communicating Sequential Processes (CSPm) and enables compliance to a

number of ED-216/DO-333 Objectives and, in particular, enables a verification of consistency as well as

compliance to Requirements Standards. It also enables the next step of verification to be automated.

The SRS was then used to develop a design (Low Level Requirements - LLR) in Simulink. A tool was used that

automatically provides a formal semantics to a subset of Simulink /Stateflow in CSPm and it then uses the

formal semantics of the HLR to automatically check that the design satisfies the requirements, or show where

there is a mistake. Note that the tool user does not get to see the formal semantics, just the natural language

requirements, the design in Simulink and the results of the formal analysis in a form such as simulation scripts

to show where non-compliances exist. There are some requirements that cannot be formally verified, for

example, ‘The software shall be developed to ED-12C/DO-178C Level A” is not formally verifiable and hence

there remain review aspects to requirements. Once we were satisfied that the design satisfied the

requirements, we auto-coded to a subset of C and this was loaded onto the simulator and subsequently on to

a UAV. It was agreed that with some simulation with hardware in the loop that we could forego formal

software test for the purposes of the experiments.

Project Technical Outcomes

Phase 1 – Basic behaviour and Trials

The project went so well that the Phase 1 software was flown in hardware in the loop simulations and then in

flight trials 6 months early, firstly with a static obstacle. Figure 1 shows the route taken by the UAV – this is

not a simulation but actual flight trial data overlaid onto map data. This flight trial showed that the behaviour

operated as designed and as expected because the manoeuvre taken can be explained. Having explicable

behaviour is crucial to making the case for safe flight of autonomous unmanned aircraft. Figure 1 shows that

the UAV took-off and headed to waypoint 1 and then headed automatically for waypoint 2. As the UAV moved

it encountered the static ADS-B transmitter (in red) which encroached upon the limits for the high integrity

decision making software. The software autonomously decided that the best behaviour would be a 90
0
 right

turn in accordance with the Standardised European Rules of the Air (SERA). Once collision was no longer a

threat, the decision making software handed back to the low integrity path planning software to get back on

course. However, the ADS-B transmitter was still encroaching and a subsequent manoeuvre was commanded.

Again, once the manoeuvre had been completed, the path planner was given control and the UAV completed

the route. This is very basic unrefined behaviour and not exactly what would be required for a commercial

system. The behavioural characteristics can be refined so that, for instance, a second manoeuvre would not

have been required as in this initial case. Subsequently a dynamic trial with 2 UAVs on a collision course was

undertaken. A video of the behaviour was produced with one UAV autonomously avoiding the other in

accordance with SERA. We believe that this is the only trial of this nature.

Figure 1 - Initial Flight Trial with Static Obstacle

Phase 2- Advanced Behaviour

The project progressed to Phase 2 behaviour starting with a new SRD. This not only refined the simple Phase 1

behaviour but crucially added a significant enhancement. This new functionality enabled the UAV to anticipate

options should it need to manoeuvre; this was called the “Airmanship Package”. Furthermore, we allowed the

UAV to undertake manoeuvres that a pilot might make but would not necessarily be in accordance with SERA.

Again, an SRS was produced, a design was produced using Simulink/Stateflow® and subjected to formal

analysis. Code was auto generated and a series of simulations were undertaken with increasingly complex

scenarios stressing the software, including some that required formation flying; see Figure 2 - Successful

Complex Scenario SimulationFigure 2. Note that no claims for certification credit for the software

verification are made as a result of simulation. In all cases, the autonomous UAV avoided all obstacles

wherever possible in accordance with SERA or, where this was not possible, through use of the Airmanship

Package.

Figure 2 - Successful Complex Scenario Simulation

Certification - Software

The approach was heavily tool supported and because of the complexity of the problem, the tools were

significantly enhanced throughout the project in order to cater for the breadth of required functionality.

These tools were subjected to a ED-215/DO-330 development process to meet a minimum Tool Qualification

Level 5 as they are Criteria 3 tools. The requirements tool, in its present form enables automated compliance

to 3 of the 7 Table FM.A-3 objectives and partial compliance to a further one objective. A summary of the

claims is in Table 1; note that the additional objectives are not shown. The following key gives the guide to

colours.

Objective

A
c
ti

v
it

y

Claim

 Description Ref Ref

1
High-level requirements comply with
system requirements.

FM.6.3.a

FM.6.3.1.a
FM.6.3.1

Manual review needed until
Kapture® for System
requirements is developed when
it will likely be a partial
compliance for derived
requirements.

2
High-level requirements are accurate and
consistent.

FM.6.3.b

FM.6.3.c

FM.6.3.1.b

FM.6.3.1

Basic functionality of Kapture
supports accuracy claim; extra
functionality gives consistency
and unambiguity.

3
High-level requirements are compatible
with target computer.

FM.6.3.d

FM.6.3.1.c
FM.6.3.1

Kapture does not support this
aspect: manual review

4 High-level requirements are verifiable.
FM.6.3.e

FM.6.3.1.d
FM.6.3.1

Kapture requirements are
verifiable due to the provision of
semantics.

5
High-level requirements conform to
standards.

FM.6.3.f

FM.6.3.1.e
FM.6.3.1

Kapture encapsulates a
requirements standard

Not met Partially met Fully met

6
High-level requirements are traceable to
system requirements.

FM.6.3.g

FM.6.3.1.f
FM.6.3.1

Manual review of manually
entered data.

7 Algorithms are accurate.
FM.6.3.h

FM.6.3.1.g
FM.6.3.1

Algorithm accuracy can be
partially shown through the use
of Kapture

Table 2 - Extract from DO-333 Annex A Table FM.A-3

It is assumed that the techniques would be applied to a Level A development, but of course they would

equally be applicable to other levels. The design verification tool Modelworks enables automated compliance

to 10 of the 13 Table FM.A-4 Objectives and partial compliance to the remainder. The partial claims are

specifically because derived requirements and the non-formally provable requirements will need review and

there are some aspects relating to the target computer which are better being reviewed.

Other Aspects of Certification

The main aim of the project was to develop and fly representative decision making software that had been

verified as far as the design step and this was achieved. A secondary aim was to develop the safety case for

the operation of the UAV in beyond visual line of sight conditions and to understand the art of the possible.

This second aspect showed that we could develop software that would enable manoeuvres that are in strict

compliance to SERA. While these were ‘safe’ and recognisable as being in compliance with SERA, they are, in

some circumstances, not what a pilot would do. SERA is open to interpretation, hence the large amount of

training a pilot receives to ensure that the intent behind rules are understood and can be rationally acted

upon. It was consequently also shown that in a looser interpretation of SERA we could develop software that

would give behaviour that would be recognisable to any pilot. This has given us the ability to have a useful

discussion on ‘required’ behaviour with regulators. It has also given us a future development path for this type

of software.

Cost Savings

As outlined earlier, a previous independent industrial scale experiment was carried out. Both prototype tools

were subjected to cost analysis on a safety critical project. While this project was conducted under ISO26262,

all tools and practices were also required to comply with a development that would support ED-12C/DO-178C

and qualification under ED-215/DO-330. The project was blind seeded with 48 errors across the 6 modules

which represented some 500 Simulink/Stateflow blocks; the participants did not know where or how many

errors were inserted. Against a benchmark of using standard review processes as well as against another tool

(SLDV), the time taken to undertake the equivalent processes to comply with the relevant objectives was

measured and the results were compiled into the graphic at Figure 3.

Figure 3 - ISO26262 Project Verification Metrics

This graph shows the following:

 In one instance (PP), no metrics were gathered for Modelworks as time to do the experiment had run

out.

 The experiment that was repeated in a second company was TA2 which gave almost exactly the same

results as the original experiment on TA. This shows that the process for measuring and the

processes used for the verification were repeatable, which validates the whole experiment.

 There are instances where there is no benefit to using SLDV (KS, TA, TA2 and TQ).

 In all cases, Modelworks showed significant savings over the baseline (60-80%) and less but still

significant savings (20-80%) over SLDV.

Since the experiment, Kapture has been produced which will automate away further aspects, and Modelworks

has also been significantly improved. It therefore depends entirely on the existing processes as to what

savings could be made in this part of the software life cycle. While consistent savings of were seen against the

review process and the competitor tool, in half of the cases the competitor tool cost marginally more than

undertaking a manual review. Furthermore, the formal review detected 49 errors; a mistake had been made

prior to the blind error seeding. No claims for code compliance were made as this was out of scope for the

project.

Comparable Approaches

We are aware of similar approaches that have been undertaken with respect to the use of formal tools. For

example, a University of Iowa led project called CoCoSpec. However, this is not necessarily scalable for

industrial use as expertise in the specifics of the formal language and the use of formal methods tools would

be needed and this is expertise typically not found in most parts of the aviation industry. In the UK, the

ASTREA project sought to understand how to develop UAVs with a specific focus on certification. The project

found out a lot of useful information on various topics but again was not able to focus on how to gain software

certification of autonomous operational software at a price that was affordable . Our approach is to make the

powerful formal tools available to the typical user that are cheap to buy and easy to use without extra training,

whilst also supporting the certification requirements.

Another approach might be to use a simulation based approach and to use ED-218/ DO-331, the Model Based

Design and Verification supplement to ED-12C/DO-178C. There has been considerable discussion in various

markets about the usefulness of simulation in verification. The problem is always how does an applicant claim

that the fidelity of the simulation is sufficient in order to make any claims and then how many cases need to be

simulated in order to achieve sufficient coverage of the requirements. This all has a cost and may not be much

different from more traditional approaches. Certainly simulation has a great role in helping to show what the

behaviour could be, in other words, in understand and eliciting requirements. For such a wide possibility of

cases as could be encountered in the air, use of an automated formal approach would appear to give the

prospect of significant cost reductions while achieving the required assurance.

Further Developments

While the requirements and design development and their verification aspects have been examined under this

project, the source and object code verification were not. Technologies exploiting automated formal methods

based independent verification for both source and object code are in development; these too will be

verification tools. It is intended that these will be deployed on UAV, other aerospace projects and in other

sectors such as maritime, in the near term and the cost impacts will be measured. The approach to the

development of the decision making software will shortly be used and adapted for a specific use case as well

as adapted for use in other domains such as underwater for off-shore and nuclear decommissioning. We have

also used the results of this project as the basis for assuring the behaviour of swarming UAVs. The further

development of tools and the mathematics behind them has been exploited to show that we can assure the

behaviour of an arbitrary size swarm of UAVs. While this of course relies upon good data from sensors, the

decision making and the control software are all highly assured at the requirements and design level. This has

shown that the approach is scalable to very large and complex problems.

Conclusions

The use of automated tools for requirements can bring significant benefits as it assists a developer get

requirements more right earlier in the development process. The development of such complex behaviour has

to start with a description of the required behaviour in an easily accessible form so that not only developers

but any regulatory body can understand what is required. Indeed, the conversation that is typically held

between a software developer and the systems engineer can be significantly enhanced through use such a

technology as it makes it very clear to both parties the implications of requirements. It consequently enables a

clearer demonstration of why the requirements have to be written in the manner that enables both parties to

agree. This is an oft overlooked area of Section 2 in DO-178C and its importance for the impact on cost should

not be under-estimated.

The use of formal methods also has to be made accessible to non-experts in order to enable their regular use.

The claims for certification credit are therefore made against the embodiment of the formal approach in tools

and not against diagrams written in Simulink/ Stateflow®. By using powerful, automated, formal methods

tools, it is possible to make considerable direct savings. It is also possible to make indirect savings because

errors are not passed onto later phases of the software development.

